## organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

### An ent-kaurane diterpenoid from Isodon japonica var. glaucocalyx

### Su-Ping Bai,<sup>a</sup>\* Guo-Sheng Luo,<sup>b</sup> Xiao-Yi Zhang<sup>a</sup> and Wei Liu<sup>a</sup>

<sup>a</sup>School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, People's Republic of China, and <sup>b</sup>Department of Science and Technology, Xinxiang Medical University, Xinxiang, Henan 453003, People's Republic of China Correspondence e-mail: baisuping@xxmu.edu.cn

Received 5 May 2009; accepted 10 July 2009

Key indicators: single-crystal X-ray study; T = 296 K; mean  $\sigma$ (C–C) = 0.007 Å; disorder in main residue; R factor = 0.063; wR factor = 0.164; data-to-parameter ratio = 8.9.

The title compound,  $14\beta$ -acetoxy- $7\alpha$ -hydroxy-ent-kaur-16ene-3,15-dione or glaucocalyxin B, C<sub>22</sub>H<sub>30</sub>O<sub>5</sub>, a natural entkaurane diterpenoid, is composed of four rings with the expected *cis* and *trans* ring junctions. In the crystal structure, there are two molecules in the asymmetric unit related by a noncrystallographic twofold screw axis, and ring A is disordered [ratio occupancies 0.829 (19):0.171 (19)], such that both chair and boat conformations are present, but with the boat conformation as the major component. In the crystal, molecules are linked by intermolecular O-H···O hydrogen bonds.

#### **Related literature**

For related literature on the genus Isodon and diterpenoids therefrom, see: Liu et al. (1988); Kim et al. (1992); Sun et al. (2001); Bai et al. (2005). For expected bond-length ranges, see: Allen et al. (1987).



#### **Experimental**

#### Crystal data

β

| $C_{22}H_{30}O_5$               | $V = 2003.8 (15) \text{ Å}^3$     |
|---------------------------------|-----------------------------------|
| $M_r = 374.46$                  | Z = 4                             |
| Monoclinic, P2 <sub>1</sub>     | Mo $K\alpha$ radiation            |
| a = 8.485 (4)  Å                | $\mu = 0.09 \text{ mm}^{-1}$      |
| b = 23.786 (10)  Å              | T = 296  K                        |
| c = 9.930 (4) Å                 | $0.36 \times 0.34 \times 0.32$ mm |
| $\beta = 91.039 \ (17)^{\circ}$ |                                   |

#### Data collection

Rigaku R-AXIS RAPID diffractometer Absorption correction: none 19620 measured reflections

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.063$ | 14 restraints                                              |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.164$               | H-atom parameters constrained                              |
| S = 1.00                        | $\Delta \rho_{\rm max} = 0.19 \ {\rm e} \ {\rm \AA}^{-3}$  |
| 4669 reflections                | $\Delta \rho_{\rm min} = -0.20 \text{ e } \text{\AA}^{-3}$ |
| 524 parameters                  |                                                            |

4669 independent reflections

 $R_{\rm int}=0.070$ 

2856 reflections with  $I > 2\sigma(I)$ 

#### Table 1 Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$                                                                                                                             | D-H                          | $H \cdot \cdot \cdot A$      | $D \cdots A$                                    | $D - \mathbf{H} \cdots A$ |
|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------------------|-------------------------------------------------|---------------------------|
| $\begin{array}{c} 02 - H20 \cdots 01^{i} \\ 02 - H20 \cdots 01^{i} \\ 02' - H20' \cdots 01'^{i} \\ 02' - H20' \cdots 01^{*^{i}} \end{array}$ | 0.82<br>0.82<br>0.82<br>0.82 | 2.09<br>2.09<br>2.05<br>2.24 | 2.747 (6)<br>2.747 (6)<br>2.764 (5)<br>2.89 (3) | 137<br>137<br>146<br>136  |
|                                                                                                                                              |                              |                              |                                                 |                           |

Symmetry code: (i) x, y, z - 1.

Data collection: RAPID-AUTO (Rigaku, 2004); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008): molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was supported by the Henan Province Science and Technology Foundation (grant No. 082300450440)

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: EZ2171).

#### References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bai, S. P., Ma, X. K. & Zhang, J. X. (2005). J. Xinxiang Med. Coll. 22, 297-299. Kim, D. S., Chang, R. G., Shen, X. Y., Chen, Y. P. & Sun, H. D. (1992).

Phytochemistry, 31, 697-699. Liu, C. J., Zhao, Z. H., Wang, Q. R., Sun, H. D. & Lin, Z. W. (1988). Acta Bot. Yunnanica, 10, 471-473.

Rigaku (2004). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Sun, H. D., Xu, Y. L. & Jiang, B. (2001). Diterpenoids from Isodon Species, pp. 4-17, 140. Beijing: Science Press.

Acta Cryst. (2009). E65, o1898 [doi:10.1107/S1600536809027159]

### An ent-kaurane diterpenoid from Isodon japonica var. glaucocalyx

### S.-P. Bai, G.-S. Luo, X.-Y. Zhang and W. Liu

#### Comment

The title compound (I) is a natural *ent*-kaurane diterpenoid isolated from the medicinal plant Isodon japonica var. glaucocalyx. This plant has been used in antibacterial, inflammation-diminishing and stomachic agents. The structure has been postulated previously based on spectroscopic methods (Liu *et al.*, 1988; Kim *et al.*,1992; Bai *et al.*, 2005). In order to further confirm the structure and conformation of (I), a crystal structure analysis, reported here, was undertaken.

The X-ray crystallographic analysis of (I) confirms the previously proposed molecular structure of (I). Fig. 1 shows its conformation: two carbonyl groups located at C3 and C15, while a hydroxyl group and an acetoxyl group adopt  $\alpha$  and  $\beta$ -orientations at C7 and C14 respectively. There is a *trans* junction between ring A (C1–C5/C10) and ring B (C5–C10); *cis* junctions are present between ring B and ring C (C8/C9/C11–C14), and ring C and ring D (C8/C13–C16).

The crystal structure analysis shows that there are two molecules in the asymmetric unit, each with different bond lengths and angles, but which are within expected ranges (Allen *et al.*, 1987). In both molecules ring B adopts a chair conformation and ring C has a slight-twist chair conformation. Ring A is disordered, such that both chair and boat conformations are present, but with the boat conformation as the major component. The ratios of boat to chair conformations are 66.7%:32.3% for C1–C5/C10, and 82.9%:17.1% for C1'–C5'/C10'. Ring D shows an envelope conformation; the flap atom, C14, lies 0.660 (6) Å from the plane defined by atoms C8, C15, C16 and C13 [0.665 (7) Å for atom C14'].

Compound (I) contains seven chiral centers at C5(S), C7(R), C8(R), C9(S), C10(R), C13(R) and C14(R). Although the absolute configuration could not be reliably determined from anomalous dispersion effects, the negative optical rotation showed this compound to be in the *ent*-kaurane seuies as reported in genus Isodon (Sun *et al.*, 2001), rather than in the kaurane series, and so allowed us to assign the correct configuration. In the crystal structure, the molecules are linked by O—H···O hydrogen bonds into chains parallel to the *c* axis (Table 1 and Fig. 2).

#### Experimental

The dried and crushed leaves of Isodon japonica var. glaucocalyx (10 kg, collected from Hui Prefecture, Henan Province, China) were extracted four times with Me<sub>2</sub>CO/H<sub>2</sub>O (7:3, v/v) at room temperature over a period of seven days. The extract was filtered and the solvent was removed under reduced pressure. The residue was then partitioned between water and AcOEt. After removal of the solvent, the AcOEt residue was separated by repeated silica gel (200–300 mesh) column chromatography and recrystallization from CHCl<sub>3</sub>/Me<sub>2</sub>CO(20:1), giving 700 mg of compound (I) (m.p. 463–465 K. Optical rotation:  $[\alpha]_D^{20}$ -130 ° (c 0.95, CHCl<sub>3</sub>). Crystals suitable for X-ray analysis were obtained by slow evaporation of a solution of the compound (I) in Me<sub>2</sub>CO at room temperature.

### Refinement

All H atoms were included in calculated positions and refined as riding atoms, with C—H = 0.96 Å (CH<sub>3</sub>), 0.93 and 0.97 Å (CH<sub>2</sub>), and 0.98 Å (CH), and with  $U_{iso}(H) = 1.2 U_{eq}(C)$ . In the absence of significant anomalous scattering effects, Friedel pairs were merged. The choice of enantiomer was based on comparison of the optical rotation with that of related compounds with known stereochemistry. Disorder in ring A was identified by peaks on a difference Fourier map. Each group of disordered atoms was refined with common site occupancies, and equivalent atoms were constrained to have the same anisotropic displacement parameters. The bond lengths in the disorder groups were restrained to values of 1.210 (3) Å (for all four C=O distances), 1.540 (3) Å (C1—C10, C1—C2, and equivalents) and 1.460 (3) Å (C2'—C3').

### **Figures**



Fig. 1. A view of the molecular structure of compound (I). Displacement ellipsoids are drawn at the 50% probability level.



Fig. 2. The crystal packing of (I), viewed along the b axis, showing the O—H…O hydrogen bonds as dashed lines.

### 14β-acetoxy-7α-hydroxy-ent-kaur-16-ene-3,15-dione

#### Crystal data

| C <sub>22</sub> H <sub>30</sub> O <sub>5</sub> | $D_{\rm x} = 1.241 {\rm Mg m}^{-3}$                   |
|------------------------------------------------|-------------------------------------------------------|
| $M_r = 374.46$                                 | Melting point: 463 K                                  |
| Monoclinic, <i>P</i> 2 <sub>1</sub>            | Mo <i>K</i> $\alpha$ radiation, $\lambda = 0.71073$ Å |
| a = 8.485 (4)  Å                               | Cell parameters from 12776 reflections                |
| b = 23.786 (10)  Å                             | $\theta = 3.1 - 27.6^{\circ}$                         |
| c = 9.930 (4)  Å                               | $\mu = 0.09 \text{ mm}^{-1}$                          |
| $\beta = 91.039 \ (17)^{\circ}$                | T = 296  K                                            |
| $V = 2003.8 (15) \text{ Å}^3$                  | Block, colourless                                     |
| Z = 4                                          | $0.36 \times 0.34 \times 0.32 \text{ mm}$             |
| $F_{000} = 808$                                |                                                       |
| Data collection                                |                                                       |
| Rigaku R-AXIS RAPID                            | 2856 reflections with $I > 2\sigma(I)$                |

| diffractometer                   |                                      |
|----------------------------------|--------------------------------------|
| Radiation source: Rotating Anode | $R_{\rm int} = 0.070$                |
| Monochromator: graphite          | $\theta_{\text{max}} = 27.5^{\circ}$ |
| T = 296  K                       | $\theta_{\min} = 3.1^{\circ}$        |
| ω scans                          | $h = -10 \rightarrow 11$             |
| Absorption correction: none      | $k = -30 \rightarrow 28$             |
| 19620 measured reflections       | $l = -12 \rightarrow 12$             |
| 4669 independent reflections     |                                      |

#### Refinement

| Refinement on $F^2$                                            | Secondary atom site location: difference Fourier map                               |
|----------------------------------------------------------------|------------------------------------------------------------------------------------|
| Least-squares matrix: full                                     | Hydrogen site location: inferred from neighbouring sites                           |
| $R[F^2 > 2\sigma(F^2)] = 0.063$                                | H-atom parameters constrained                                                      |
| $wR(F^2) = 0.164$                                              | $w = 1/[\sigma^2(F_o^2) + (0.0896P)^2 + 0.022P]$<br>where $P = (F_o^2 + 2F_c^2)/3$ |
| S = 1.00                                                       | $(\Delta/\sigma)_{\text{max}} = 0.001$                                             |
| 4669 reflections                                               | $\Delta \rho_{max} = 0.19 \text{ e } \text{\AA}^{-3}$                              |
| 524 parameters                                                 | $\Delta \rho_{min} = -0.20 \text{ e } \text{\AA}^{-3}$                             |
| 14 restraints                                                  | Extinction correction: none                                                        |
| Primary atom site location: structure-invariant direct methods |                                                                                    |

#### Special details

**Experimental**. The assignment of absolute structure was based on comparison of the optical rotation with that of related compounds with known stereochemistry.

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

|     | x           | у            | Ζ          | $U_{\rm iso}*/U_{\rm eq}$ | Occ. (<1) |
|-----|-------------|--------------|------------|---------------------------|-----------|
| O2  | 0.1468 (4)  | 0.62378 (17) | 0.4126 (3) | 0.0622 (9)                |           |
| H2O | 0.1223      | 0.6421       | 0.3455     | 0.075*                    |           |
| O3  | -0.1799 (5) | 0.69449 (15) | 0.3591 (3) | 0.0678 (10)               |           |
| O4  | -0.0788 (4) | 0.53978 (13) | 0.3705 (3) | 0.0528 (8)                |           |
| 05  | 0.1013 (6)  | 0.4948 (2)   | 0.4969 (5) | 0.1003 (17)               |           |
| 01  | 0.1366 (10) | 0.6324 (4)   | 1.1368 (5) | 0.097 (3)                 | 0.677 (9) |

| C1   | -0.1799 (14) | 0.6575 (9)   | 0.9035 (12) | 0.0647 (16) | 0.677 (9) |
|------|--------------|--------------|-------------|-------------|-----------|
| H1A  | -0.2358      | 0.6891       | 0.8638      | 0.078*      | 0.677 (9) |
| H1B  | -0.2575      | 0.6331       | 0.9438      | 0.078*      | 0.677 (9) |
| C2   | -0.0687 (12) | 0.6796 (5)   | 1.0157 (8)  | 0.077 (3)   | 0.677 (9) |
| H2A  | -0.0502      | 0.7193       | 0.9995      | 0.092*      | 0.677 (9) |
| H2B  | -0.1227      | 0.6766       | 1.1007      | 0.092*      | 0.677 (9) |
| O1"  | 0.1487 (19)  | 0.6698 (7)   | 1.1325 (10) | 0.097 (3)   | 0.323 (9) |
| C1"  | -0.173 (3)   | 0.6548 (19)  | 0.9108 (18) | 0.0647 (16) | 0.323 (9) |
| H1C  | -0.1763      | 0.6949       | 0.8932      | 0.078*      | 0.323 (9) |
| H1D  | -0.2805      | 0.6418       | 0.9200      | 0.078*      | 0.323 (9) |
| C2"  | -0.082 (3)   | 0.6443 (12)  | 1.0439 (18) | 0.077 (3)   | 0.323 (9) |
| H2C  | -0.1191      | 0.6701       | 1.1117      | 0.092*      | 0.323 (9) |
| H2D  | -0.1030      | 0.6064       | 1.0746      | 0.092*      | 0.323 (9) |
| C3   | 0.0870 (6)   | 0.6513 (2)   | 1.0308 (4)  | 0.0596 (13) |           |
| C4   | 0.1788 (6)   | 0.6446 (2)   | 0.9042 (4)  | 0.0522 (11) |           |
| C5   | 0.0705 (5)   | 0.64895 (18) | 0.7754 (4)  | 0.0391 (9)  |           |
| Н5   | 0.0561       | 0.6893       | 0.7597      | 0.047*      |           |
| C6   | 0.1477 (5)   | 0.6264 (2)   | 0.6482 (4)  | 0.0444 (10) |           |
| H6A  | 0.2535       | 0.6416       | 0.6425      | 0.053*      |           |
| H6B  | 0.1559       | 0.5858       | 0.6542      | 0.053*      |           |
| C7   | 0.0559 (5)   | 0.64180 (19) | 0.5227 (4)  | 0.0442 (10) |           |
| H7   | 0.0513       | 0.6829       | 0.5189      | 0.053*      |           |
| C8   | -0.1146 (5)  | 0.62046 (18) | 0.5220 (4)  | 0.0380 (9)  |           |
| С9   | -0.1924 (5)  | 0.63960 (18) | 0.6580 (4)  | 0.0443 (10) |           |
| Н9   | -0.1918      | 0.6808       | 0.6543      | 0.053*      |           |
| C10  | -0.0983(5)   | 0.62477 (17) | 0.7901 (3)  | 0.0428 (10) |           |
| C11  | -0.3706(6)   | 0.6233 (2)   | 0.6593 (5)  | 0.0604 (13) |           |
| H11A | -0.4033      | 0.6220       | 0 7523      | 0.073*      |           |
| H11B | -0.4300      | 0.6532       | 0.6154      | 0.073*      |           |
| C12  | -0.4176 (6)  | 0.5680 (3)   | 0.5925 (5)  | 0.0669 (14) |           |
| H12A | -0.5306      | 0.5674       | 0.5762      | 0.080*      |           |
| H12B | -0.3907      | 0.5370       | 0.6521      | 0.080*      |           |
| C13  | -0.3319(6)   | 0.5609 (2)   | 0.4582 (5)  | 0.0566 (12) |           |
| H13  | -0.3673      | 0.5271       | 0.4100      | 0.068*      |           |
| C14  | -0.1555(5)   | 0.55858(18)  | 0 4915 (4)  | 0.0462 (10) |           |
| H14  | -0.1320      | 0.5340       | 0.5685      | 0.055*      |           |
| C15  | -0.2106(6)   | 0.6491 (2)   | 0.4093 (4)  | 0.0500 (11) |           |
| C16  | -0.3460(6)   | 0.6124(2)    | 0 3714 (5)  | 0.0575 (13) |           |
| C17  | -0.4607(8)   | 0.6273(3)    | 0.2837(6)   | 0.091 (2)   |           |
| H17A | -0.4583      | 0.6625       | 0.2428      | 0.109*      |           |
| H17B | -0 5426      | 0.6025       | 0.2638      | 0.109*      |           |
| C18  | 0.2971 (7)   | 0.6944 (3)   | 0.9021 (5)  | 0.0727 (16) |           |
| H18A | 0.2405       | 0.7292       | 0.9077      | 0.087*      |           |
| H18R | 0.3548       | 0.6935       | 0.8199      | 0.087*      |           |
| H18C | 0.3692       | 0.6913       | 0.9774      | 0.087*      |           |
| C19  | 0.2760 (6)   | 0.5904(2)    | 0.9127 (5)  | 0.0645 (14) |           |
| H19A | 0.3420       | 0.5913       | 0.9922      | 0.077*      |           |
| H19R | 0.3405       | 0.5874       | 0.8346      | 0.077*      |           |
| H19C | 0.2064       | 0.5587       | 0.9166      | 0.077*      |           |
|      | 0.2001       | 0.0007       | 0.9100      | 0.011       |           |

| C20  | -0.0951(6)  | 0 5615 (2)   | 0.8243(5)  | 0.0592(13)  |            |
|------|-------------|--------------|------------|-------------|------------|
| H20A | -0.0239     | 0.5425       | 0.7655     | 0.071*      |            |
| H20B | -0 1990     | 0.5461       | 0.8125     | 0.071*      |            |
| H20C | -0.0604     | 0.5565       | 0.9161     | 0.071*      |            |
| C21  | 0.0542(7)   | 0.5098 (2)   | 0 3887 (5) | 0.0637 (14) |            |
| C22  | 0.1285 (10) | 0.4971 (3)   | 0.2562 (7) | 0.106 (3)   |            |
| H22A | 0.2276      | 0.4786       | 0.2717     | 0.128*      |            |
| H22B | 0 1453      | 0 5316       | 0 2081     | 0 128*      |            |
| H22C | 0.0599      | 0.4731       | 0.2041     | 0.128*      |            |
| 02'  | 0.3469 (4)  | 0.85034 (16) | 0.0269 (3) | 0.0586 (9)  |            |
| H2O' | 0.3975      | 0.8477       | -0.0424    | 0.070*      |            |
| O3'  | 0.6721 (5)  | 0.77771 (15) | -0.0252(4) | 0.0660 (10) |            |
| O4'  | 0.5734 (4)  | 0.93369 (14) | -0.0081(3) | 0.0550 (9)  |            |
| 05'  | 0.4016 (6)  | 0.9800 (2)   | 0.1187 (4) | 0.1003 (16) |            |
| 01'  | 0.3864 (11) | 0.8451 (4)   | 0.7516 (5) | 0.090 (3)   | 0.829 (19) |
| C1'  | 0.6870 (10) | 0.8126 (4)   | 0.5231 (7) | 0.064 (2)   | 0.829 (19) |
| H1'1 | 0.7421      | 0.7807       | 0.4855     | 0.077*      | 0.829 (19) |
| H1'2 | 0.7649      | 0.8368       | 0.5661     | 0.077*      | 0.829 (19) |
| C2'  | 0.5725 (10) | 0.7913 (5)   | 0.6304 (8) | 0.072 (3)   | 0.829 (19) |
| H2'1 | 0.5420      | 0.7531       | 0.6076     | 0.087*      | 0.829 (19) |
| H2'2 | 0.6284      | 0.7900       | 0.7164     | 0.087*      | 0.829 (19) |
| 01*  | 0 350 (5)   | 0.818 (2)    | 0 746 (3)  | 0.090 (3)   | 0 171 (19) |
| C1*  | 0.666 (8)   | 0.806 (2)    | 0.521 (2)  | 0.064 (2)   | 0.171 (19) |
| H1*1 | 0.6369      | 0.7680       | 0.5005     | 0.077*      | 0.171 (19) |
| H1*2 | 0.7805      | 0.8085       | 0.5255     | 0.077*      | 0.171 (19) |
| C2*  | 0.599 (3)   | 0.8233 (17)  | 0.658 (2)  | 0.039 (8)   | 0.171 (19) |
| H2*1 | 0.6315      | 0.7962       | 0.7264     | 0.047*      | 0.171 (19) |
| H2*2 | 0.6387      | 0.8599       | 0.6848     | 0.047*      | 0.171 (19) |
| C3'  | 0.4290 (6)  | 0.8247 (2)   | 0.6466 (4) | 0.0588 (13) |            |
| C4'  | 0.3273 (6)  | 0.8314 (2)   | 0.5166 (4) | 0.0476 (11) |            |
| C5'  | 0.4329 (5)  | 0.82451 (17) | 0.3899 (4) | 0.0399 (9)  |            |
| H5'  | 0.4410      | 0.7839       | 0.3754     | 0.048*      |            |
| C6'  | 0.3526 (5)  | 0.84739 (19) | 0.2639 (4) | 0.0438 (10) |            |
| H6'1 | 0.3479      | 0.8881       | 0.2694     | 0.053*      |            |
| H6'2 | 0.2454      | 0.8333       | 0.2583     | 0.053*      |            |
| C7'  | 0.4394 (5)  | 0.83058 (19) | 0.1374 (4) | 0.0416 (9)  |            |
| H7'  | 0.4407      | 0.7894       | 0.1331     | 0.050*      |            |
| C8'  | 0.6112 (5)  | 0.85099 (16) | 0.1395 (4) | 0.0373 (9)  |            |
| C9'  | 0.6931 (5)  | 0.83068 (19) | 0.2744 (4) | 0.0429 (10) |            |
| H9'  | 0.6895      | 0.7895       | 0.2694     | 0.051*      |            |
| C10' | 0.6046 (5)  | 0.84534 (16) | 0.4075 (3) | 0.0415 (10) |            |
| C11' | 0.8721 (5)  | 0.8451 (2)   | 0.2767 (5) | 0.0597 (13) |            |
| H11C | 0.9092      | 0.8451       | 0.3697     | 0.072*      |            |
| H11D | 0.9275      | 0.8154       | 0.2305     | 0.072*      |            |
| C12' | 0.9178 (6)  | 0.9010 (3)   | 0.2136 (5) | 0.0667 (14) |            |
| H12C | 0.8945      | 0.9313       | 0.2754     | 0.080*      |            |
| H12D | 1.0302      | 0.9013       | 0.1977     | 0.080*      |            |
| C13' | 0.8294 (6)  | 0.9105 (2)   | 0.0819 (5) | 0.0585 (12) |            |
| H13' | 0.8646      | 0.9449       | 0.0370     | 0.070*      |            |
|      |             |              |            |             |            |

| C14' | 0.6525 (5) | 0.91288 (19) | 0.1136 (4)  | 0.0459 (10) |
|------|------------|--------------|-------------|-------------|
| H14' | 0.6315     | 0.9366       | 0.1919      | 0.055*      |
| C15' | 0.7050 (6) | 0.8232 (2)   | 0.0252 (4)  | 0.0501 (11) |
| C16' | 0.8382 (6) | 0.8602 (2)   | -0.0094 (5) | 0.0587 (13) |
| C17' | 0.9457 (7) | 0.8461 (3)   | -0.0995 (6) | 0.088 (2)   |
| H17C | 0.9389     | 0.8117       | -0.1437     | 0.106*      |
| H17D | 1.0277     | 0.8707       | -0.1183     | 0.106*      |
| C18' | 0.2105 (7) | 0.7819 (3)   | 0.5205 (6)  | 0.0732 (16) |
| H18D | 0.1380     | 0.7875       | 0.5924      | 0.088*      |
| H18E | 0.2674     | 0.7475       | 0.5350      | 0.088*      |
| H18F | 0.1532     | 0.7798       | 0.4363      | 0.088*      |
| C19' | 0.2339 (6) | 0.8872 (2)   | 0.5239 (5)  | 0.0613 (13) |
| H19D | 0.1804     | 0.8892       | 0.6081      | 0.074*      |
| H19E | 0.1581     | 0.8887       | 0.4510      | 0.074*      |
| H19F | 0.3054     | 0.9183       | 0.5170      | 0.074*      |
| C20' | 0.6079 (6) | 0.9084 (2)   | 0.4436 (5)  | 0.0559 (12) |
| H20D | 0.5455     | 0.9290       | 0.3788      | 0.067*      |
| H20E | 0.7146     | 0.9217       | 0.4427      | 0.067*      |
| H20F | 0.5657     | 0.9137       | 0.5317      | 0.067*      |
| C21' | 0.4459 (7) | 0.9658 (2)   | 0.0084 (5)  | 0.0643 (14) |
| C22' | 0.3709 (9) | 0.9785 (3)   | -0.1242 (7) | 0.095 (2)   |
| H22D | 0.2715     | 0.9594       | -0.1315     | 0.114*      |
| H22E | 0.4384     | 0.9661       | -0.1948     | 0.114*      |
| H22F | 0.3542     | 1.0183       | -0.1320     | 0.114*      |

Atomic displacement parameters  $(\text{\AA}^2)$ 

|     | $U^{11}$  | $U^{22}$    | U <sup>33</sup> | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|-----|-----------|-------------|-----------------|--------------|--------------|--------------|
| O2  | 0.053 (2) | 0.099 (3)   | 0.0356 (15)     | -0.0010 (19) | 0.0084 (15)  | 0.0041 (16)  |
| O3  | 0.087 (3) | 0.059 (2)   | 0.057 (2)       | 0.0069 (19)  | -0.0092 (19) | 0.0131 (17)  |
| O4  | 0.063 (2) | 0.0525 (18) | 0.0430 (16)     | 0.0125 (16)  | -0.0033 (15) | -0.0103 (13) |
| O5  | 0.112 (4) | 0.113 (4)   | 0.076 (3)       | 0.068 (3)    | 0.006 (3)    | 0.016 (2)    |
| O1  | 0.120 (4) | 0.138 (8)   | 0.033 (2)       | 0.059 (6)    | 0.007 (2)    | 0.027 (4)    |
| C1  | 0.051 (3) | 0.097 (5)   | 0.046 (3)       | 0.013 (3)    | 0.007 (2)    | -0.016 (3)   |
| C2  | 0.095 (6) | 0.097 (8)   | 0.038 (4)       | 0.032 (7)    | 0.001 (4)    | -0.015 (5)   |
| O1" | 0.120 (4) | 0.138 (8)   | 0.033 (2)       | 0.059 (6)    | 0.007 (2)    | 0.027 (4)    |
| C1" | 0.051 (3) | 0.097 (5)   | 0.046 (3)       | 0.013 (3)    | 0.007 (2)    | -0.016 (3)   |
| C2" | 0.095 (6) | 0.097 (8)   | 0.038 (4)       | 0.032 (7)    | 0.001 (4)    | -0.015 (5)   |
| C3  | 0.069 (4) | 0.076 (3)   | 0.033 (2)       | 0.003 (3)    | -0.006 (2)   | 0.000 (2)    |
| C4  | 0.056 (3) | 0.064 (3)   | 0.037 (2)       | -0.004 (2)   | 0.002 (2)    | 0.002 (2)    |
| C5  | 0.045 (2) | 0.038 (2)   | 0.0333 (18)     | -0.0027 (18) | -0.0041 (17) | 0.0023 (16)  |
| C6  | 0.037 (2) | 0.061 (3)   | 0.036 (2)       | -0.006 (2)   | 0.0068 (18)  | 0.0014 (19)  |
| C7  | 0.050 (3) | 0.053 (2)   | 0.0302 (18)     | 0.002 (2)    | 0.0048 (18)  | 0.0022 (17)  |
| C8  | 0.038 (2) | 0.043 (2)   | 0.0332 (18)     | 0.0036 (18)  | -0.0027 (17) | -0.0001 (16) |
| C9  | 0.041 (2) | 0.046 (2)   | 0.046 (2)       | 0.0038 (19)  | 0.0025 (19)  | -0.0091 (18) |
| C10 | 0.044 (2) | 0.047 (2)   | 0.037 (2)       | -0.001 (2)   | 0.0069 (18)  | 0.0002 (18)  |
| C11 | 0.037 (3) | 0.088 (4)   | 0.056 (3)       | 0.006 (3)    | 0.005 (2)    | -0.015 (3)   |
| C12 | 0.044 (3) | 0.088 (4)   | 0.069 (3)       | -0.018 (3)   | 0.003 (2)    | -0.013 (3)   |

| C13  | 0.049 (3)   | 0.060 (3)   | 0.061 (3)   | -0.007 (2)   | -0.005 (2)   | -0.016 (2)   |
|------|-------------|-------------|-------------|--------------|--------------|--------------|
| C14  | 0.054 (3)   | 0.042 (2)   | 0.042 (2)   | 0.001 (2)    | 0.003 (2)    | -0.0048 (18) |
| C15  | 0.059 (3)   | 0.052 (3)   | 0.039 (2)   | 0.015 (2)    | -0.001 (2)   | -0.003 (2)   |
| C16  | 0.048 (3)   | 0.068 (3)   | 0.057 (3)   | 0.011 (2)    | -0.009 (2)   | -0.011 (2)   |
| C17  | 0.068 (4)   | 0.103 (5)   | 0.100 (5)   | 0.016 (4)    | -0.034 (4)   | -0.010 (4)   |
| C18  | 0.065 (4)   | 0.098 (4)   | 0.055 (3)   | -0.025 (3)   | -0.010 (3)   | -0.003 (3)   |
| C19  | 0.055 (3)   | 0.088 (4)   | 0.051 (3)   | 0.011 (3)    | -0.012 (2)   | 0.011 (2)    |
| C20  | 0.059 (3)   | 0.066 (3)   | 0.052 (3)   | -0.015 (2)   | -0.001 (2)   | 0.015 (2)    |
| C21  | 0.070 (4)   | 0.063 (3)   | 0.059 (3)   | 0.021 (3)    | 0.004 (3)    | -0.006 (2)   |
| C22  | 0.128 (7)   | 0.109 (5)   | 0.084 (4)   | 0.039 (5)    | 0.029 (4)    | -0.035 (4)   |
| O2'  | 0.0475 (19) | 0.096 (3)   | 0.0321 (14) | 0.0080 (18)  | -0.0098 (13) | 0.0048 (16)  |
| O3'  | 0.075 (3)   | 0.063 (2)   | 0.060 (2)   | 0.0144 (19)  | 0.0030 (18)  | -0.0161 (17) |
| O4'  | 0.063 (2)   | 0.0590 (19) | 0.0433 (16) | 0.0187 (17)  | 0.0021 (15)  | 0.0113 (14)  |
| O5'  | 0.121 (4)   | 0.108 (3)   | 0.072 (3)   | 0.068 (3)    | -0.003 (3)   | -0.019 (2)   |
| 01'  | 0.115 (5)   | 0.125 (7)   | 0.0296 (18) | 0.023 (5)    | -0.004 (2)   | -0.004 (3)   |
| C1'  | 0.062 (5)   | 0.087 (4)   | 0.043 (2)   | 0.012 (4)    | -0.013 (2)   | 0.010 (3)    |
| C2'  | 0.084 (6)   | 0.085 (7)   | 0.048 (4)   | 0.009 (5)    | -0.009 (4)   | 0.025 (4)    |
| 01*  | 0.115 (5)   | 0.125 (7)   | 0.0296 (18) | 0.023 (5)    | -0.004 (2)   | -0.004 (3)   |
| C1*  | 0.062 (5)   | 0.087 (4)   | 0.043 (2)   | 0.012 (4)    | -0.013 (2)   | 0.010 (3)    |
| C2*  | 0.046 (16)  | 0.046 (19)  | 0.025 (11)  | -0.016 (13)  | -0.019 (10)  | -0.005 (12)  |
| C3'  | 0.075 (4)   | 0.067 (3)   | 0.033 (2)   | -0.012 (3)   | -0.002 (2)   | 0.005 (2)    |
| C4'  | 0.053 (3)   | 0.054 (3)   | 0.035 (2)   | -0.003 (2)   | -0.0004 (19) | 0.0050 (19)  |
| C5'  | 0.047 (2)   | 0.042 (2)   | 0.0309 (18) | -0.0028 (18) | -0.0043 (17) | 0.0004 (16)  |
| C6'  | 0.040 (2)   | 0.056 (3)   | 0.035 (2)   | -0.003 (2)   | -0.0070 (18) | 0.0007 (19)  |
| C7'  | 0.041 (2)   | 0.052 (2)   | 0.0312 (19) | 0.000 (2)    | -0.0090 (17) | -0.0043 (18) |
| C8'  | 0.038 (2)   | 0.039 (2)   | 0.0343 (19) | 0.0083 (18)  | -0.0045 (17) | 0.0039 (16)  |
| C9'  | 0.041 (2)   | 0.047 (2)   | 0.041 (2)   | 0.0046 (19)  | -0.0070 (18) | 0.0029 (18)  |
| C10' | 0.043 (2)   | 0.047 (2)   | 0.034 (2)   | -0.0011 (19) | -0.0075 (17) | 0.0014 (17)  |
| C11' | 0.040 (3)   | 0.082 (3)   | 0.057 (3)   | 0.010 (3)    | -0.010 (2)   | 0.004 (2)    |
| C12' | 0.041 (3)   | 0.092 (4)   | 0.067 (3)   | -0.010 (3)   | 0.001 (2)    | 0.004 (3)    |
| C13' | 0.058 (3)   | 0.059 (3)   | 0.059 (3)   | -0.001 (2)   | 0.006 (2)    | 0.007 (2)    |
| C14' | 0.047 (3)   | 0.049 (2)   | 0.041 (2)   | 0.004 (2)    | -0.004 (2)   | 0.0032 (19)  |
| C15' | 0.047 (3)   | 0.062 (3)   | 0.041 (2)   | 0.014 (2)    | -0.002 (2)   | 0.006 (2)    |
| C16' | 0.052 (3)   | 0.079 (3)   | 0.045 (2)   | 0.014 (3)    | 0.004 (2)    | 0.011 (2)    |
| C17' | 0.071 (4)   | 0.115 (5)   | 0.080 (4)   | 0.029 (4)    | 0.029 (3)    | 0.008 (4)    |
| C18' | 0.078 (4)   | 0.084 (4)   | 0.057 (3)   | -0.028 (3)   | 0.006 (3)    | 0.009 (3)    |
| C19' | 0.056 (3)   | 0.076 (3)   | 0.052 (3)   | 0.013 (3)    | 0.007 (2)    | 0.001 (2)    |
| C20' | 0.059 (3)   | 0.055 (3)   | 0.054 (3)   | -0.012 (2)   | -0.001 (2)   | -0.013 (2)   |
| C21' | 0.075 (4)   | 0.051 (3)   | 0.066 (3)   | 0.024 (3)    | -0.006 (3)   | 0.006 (2)    |
| C22' | 0.092 (5)   | 0.100 (5)   | 0.091 (4)   | 0.042 (4)    | -0.018 (4)   | 0.027 (4)    |
|      |             |             |             |              |              |              |
|      |             |             |             |              |              |              |

| Geometric parameters (Å | °, °)     |          |           |
|-------------------------|-----------|----------|-----------|
| O2—C7                   | 1.416 (5) | O2'—C7'  | 1.417 (5) |
| O2—H2O                  | 0.8200    | O2'—H2O' | 0.8200    |
| O3—C15                  | 1.218 (6) | O3'—C15' | 1.223 (6) |
| O4—C21                  | 1.344 (6) | O4'—C21' | 1.337 (6) |
| O4—C14                  | 1.447 (5) | O4'—C14' | 1.458 (5) |
| O5—C21                  | 1.195 (6) | O5'—C21' | 1.213 (6) |

| O1—C3    | 1.212 (3)  | O1'—C3'   | 1.211 (3) |
|----------|------------|-----------|-----------|
| C1—C2    | 1.540 (3)  | C1'—C2'   | 1.540 (3) |
| C1—C10   | 1.543 (3)  | C1'—C10'  | 1.543 (3) |
| C1—H1A   | 0.9700     | C1'—H1'1  | 0.9700    |
| C1—H1B   | 0.9700     | C1'—H1'2  | 0.9700    |
| C2—C3    | 1.488 (11) | C2'—C3'   | 1.464 (3) |
| C2—H2A   | 0.9700     | C2'—H2'1  | 0.9700    |
| C2—H2B   | 0.9700     | C2'—H2'2  | 0.9700    |
| O1"—C3   | 1.212 (3)  | O1*—C3'   | 1.210 (3) |
| C1"—C2"  | 1.540 (3)  | C1*—C2*   | 1.540 (3) |
| C1"—C10  | 1.541 (3)  | C1*—C10'  | 1.541 (3) |
| C1"—H1C  | 0.9700     | C1*—H1*1  | 0.9700    |
| C1"—H1D  | 0.9700     | C1*—H1*2  | 0.9700    |
| C2"—C3   | 1.45 (3)   | C2*—C3'   | 1.45 (3)  |
| C2"—H2C  | 0.9700     | C2*—H2*1  | 0.9700    |
| C2"—H2D  | 0.9700     | C2*—H2*2  | 0.9700    |
| C3—C4    | 1.499 (6)  | C3'—C4'   | 1.548 (6) |
| C4—C19   | 1.532 (7)  | C4'—C18'  | 1.541 (7) |
| C4—C18   | 1.553 (7)  | C4'—C19'  | 1.548 (7) |
| C4—C5    | 1.565 (6)  | C4'—C5'   | 1.567 (6) |
| C5—C6    | 1.530 (5)  | C5'—C6'   | 1.515 (5) |
| C5—C10   | 1.553 (6)  | C5'—C10'  | 1.545 (6) |
| С5—Н5    | 0.9800     | C5'—H5'   | 0.9800    |
| C6—C7    | 1.502 (6)  | C6'—C7'   | 1.521 (5) |
| С6—Н6А   | 0.9700     | C6'—H6'1  | 0.9700    |
| С6—Н6В   | 0.9700     | C6'—H6'2  | 0.9700    |
| C7—C8    | 1.533 (6)  | C7'—C8'   | 1.536 (6) |
| С7—Н7    | 0.9800     | С7'—Н7'   | 0.9800    |
| C8—C15   | 1.533 (6)  | C8'—C14'  | 1.536 (6) |
| C8—C14   | 1.541 (6)  | C8'—C15'  | 1.546 (6) |
| C8—C9    | 1.580 (5)  | C8'—C9'   | 1.574 (5) |
| C9—C11   | 1.562 (6)  | C9'—C11'  | 1.558 (6) |
| C9—C10   | 1.563 (6)  | C9'—C10'  | 1.571 (5) |
| С9—Н9    | 0.9800     | С9'—Н9'   | 0.9800    |
| C10—C20  | 1.543 (7)  | C10'—C20' | 1.542 (6) |
| C11—C12  | 1.524 (8)  | C11'—C12' | 1.521 (8) |
| C11—H11A | 0.9700     | C11'—H11C | 0.9700    |
| C11—H11B | 0.9700     | C11'—H11D | 0.9700    |
| C12—C13  | 1.540 (7)  | C12'—C13' | 1.512 (8) |
| C12—H12A | 0.9700     | C12'—H12C | 0.9700    |
| C12—H12B | 0.9700     | C12'—H12D | 0.9700    |
| C13—C16  | 1.502 (7)  | C13'—C16' | 1.504 (7) |
| C13—C14  | 1.528 (7)  | C13'—C14' | 1.540 (7) |
| C13—H13  | 0.9800     | С13'—Н13' | 0.9800    |
| C14—H14  | 0.9800     | C14'—H14' | 0.9800    |
| C15—C16  | 1.487 (7)  | C15'—C16' | 1.478 (7) |
| C16—C17  | 1.342 (8)  | C16'—C17' | 1.332 (7) |
| CI/—H17A | 0.9300     | C17—H17C  | 0.9300    |
| C17—H17B | 0.9300     | C17'—H17D | 0.9300    |

| C18—H18A                 | 0.9600     | C18'—H18D     | 0.9600     |
|--------------------------|------------|---------------|------------|
| C18—H18B                 | 0.9600     | C18'—H18E     | 0.9600     |
| C18—H18C                 | 0.9600     | C18'—H18F     | 0.9600     |
| C19—H19A                 | 0.9600     | C19'—H19D     | 0.9600     |
| C19—H19B                 | 0.9600     | С19'—Н19Е     | 0.9600     |
| C19—H19C                 | 0.9600     | C19'—H19F     | 0.9600     |
| C20—H20A                 | 0.9600     | C20'—H20D     | 0.9600     |
| C20—H20B                 | 0.9600     | С20'—Н20Е     | 0.9600     |
| C20—H20C                 | 0.9600     | C20'—H20F     | 0.9600     |
| C21—C22                  | 1.499 (8)  | C21'—C22'     | 1.482 (8)  |
| C22—H22A                 | 0.9600     | C22'—H22D     | 0.9600     |
| C22—H22B                 | 0.9600     | С22'—Н22Е     | 0.9600     |
| С22—Н22С                 | 0.9600     | C22'—H22F     | 0.9600     |
| С7—О2—Н2О                | 109.5      | C7'—O2'—H2O'  | 109.5      |
| C21—O4—C14               | 116.2 (4)  | C21'—O4'—C14' | 117.0 (4)  |
| C2-C1-C10                | 115.1 (7)  | C2'—C1'—C10'  | 113.4 (5)  |
| C2—C1—H1A                | 108.5      | C2'—C1'—H1'1  | 108.9      |
| C10—C1—H1A               | 108.5      | C10'—C1'—H1'1 | 108.9      |
| C2—C1—H1B                | 108.5      | C2'—C1'—H1'2  | 108.9      |
| C10—C1—H1B               | 108.5      | C10'—C1'—H1'2 | 108.9      |
| H1A—C1—H1B               | 107.5      | H1'1—C1'—H1'2 | 107.7      |
| C3—C2—C1                 | 116.7 (7)  | C3'—C2'—C1'   | 115.7 (5)  |
| C3—C2—H2A                | 108.1      | C3'—C2'—H2'1  | 108.4      |
| С1—С2—Н2А                | 108.1      | C1'—C2'—H2'1  | 108.4      |
| C3—C2—H2B                | 108.1      | C3'—C2'—H2'2  | 108.4      |
| C1—C2—H2B                | 108.1      | C1'—C2'—H2'2  | 108.4      |
| H2A—C2—H2B               | 107.3      | H2'1—C2'—H2'2 | 107.4      |
| C2"—C1"—C10              | 112.6 (12) | C2*—C1*—C10'  | 111.4 (16) |
| C2"—C1"—H1C              | 109.1      | C2*—C1*—H1*1  | 109.3      |
| C10—C1"—H1C              | 109.1      | C10'—C1*—H1*1 | 109.3      |
| C2"—C1"—H1D              | 109.1      | C2*—C1*—H1*2  | 109.3      |
| C10—C1"—H1D              | 109.1      | C10'—C1*—H1*2 | 109.3      |
| H1C-C1"-H1D              | 107.8      | H1*1—C1*—H1*2 | 108.0      |
| C3—C2"—C1"               | 112.7 (19) | C3'-C2*-C1*   | 109 (3)    |
| C3 - C2'' - H2C          | 109.0      | C3'-C2*-H2*1  | 110.0      |
| C1"-C2"-H2C              | 109.0      | C1*-C2*-H2*1  | 110.0      |
| $C_{3}$ $C_{2}$ $H_{2}$  | 109.0      | C3'-C2*-H2*2  | 110.0      |
| C1"-C2"-H2D              | 109.0      | C1*-C2*-H2*2  | 110.0      |
| $H_2C$ — $C_2$ "— $H_2D$ | 107.8      | H2*1-C2*-H2*2 | 108.3      |
| 01"                      | 43 4 (7)   | 01*-C3'-01'   | 34 (2)     |
| 01"                      | 112.3 (12) | 01*           | 120 (2)    |
| 01 - C3 - C2"            | 102.0(12)  | 01'           | 1047(12)   |
| 01"                      | 106.7 (9)  | 01*           | 120 (2)    |
| 01 - C3 - C2             | 123 3 (6)  | 01'           | 1250(7)    |
| C2''-C3-C2               | 35.4 (9)   | C2*—C3'—C2'   | 33.5 (12)  |
| 01"                      | 121.0 (9)  | 01*           | 113 (2)    |
| 01-C3-C4                 | 120.7 (6)  | 01'           | 120.4 (5)  |
| C2"—C3—C4                | 126.3 (8)  | C2*—C3'—C4'   | 127.6 (10) |
| C2—C3—C4                 | 115.9 (5)  | C2'-C3'-C4'   | 114.6 (5)  |
|                          | 、- /       |               |            |

| C3—C4—C19    | 109.3 (4)  | C18'—C4'—C19'  | 108.9 (4)  |
|--------------|------------|----------------|------------|
| C3—C4—C18    | 106.0 (4)  | C18'—C4'—C3'   | 104.4 (4)  |
| C19—C4—C18   | 107.2 (4)  | C19'—C4'—C3'   | 109.2 (4)  |
| C3—C4—C5     | 111.8 (4)  | C18'—C4'—C5'   | 108.5 (4)  |
| C19—C4—C5    | 114.1 (4)  | C19'—C4'—C5'   | 115.3 (3)  |
| C18—C4—C5    | 108.0 (4)  | C3'—C4'—C5'    | 109.9 (4)  |
| C6—C5—C10    | 110.9 (3)  | C6'—C5'—C10'   | 112.8 (3)  |
| C6—C5—C4     | 113.5 (4)  | C6'—C5'—C4'    | 111.8 (4)  |
| C10—C5—C4    | 115.4 (3)  | C10'C4'        | 115.3 (3)  |
| С6—С5—Н5     | 105.4      | C6'—C5'—H5'    | 105.3      |
| С10—С5—Н5    | 105.4      | C10'—C5'—H5'   | 105.3      |
| С4—С5—Н5     | 105.4      | C4'—C5'—H5'    | 105.3      |
| C7—C6—C5     | 112.1 (4)  | C5'—C6'—C7'    | 111.8 (4)  |
| С7—С6—Н6А    | 109.2      | С5'—С6'—Н6'1   | 109.3      |
| С5—С6—Н6А    | 109.2      | С7'—С6'—Н6'1   | 109.3      |
| С7—С6—Н6В    | 109.2      | С5'—С6'—Н6'2   | 109.3      |
| С5—С6—Н6В    | 109.2      | С7'—С6'—Н6'2   | 109.3      |
| H6A—C6—H6B   | 107.9      | H6'1—C6'—H6'2  | 107.9      |
| O2—C7—C6     | 106.6 (4)  | O2'—C7'—C6'    | 106.4 (3)  |
| O2—C7—C8     | 115.1 (4)  | O2'—C7'—C8'    | 114.7 (3)  |
| C6—C7—C8     | 113.5 (3)  | C6'—C7'—C8'    | 112.3 (3)  |
| O2—C7—H7     | 107.1      | O2'—C7'—H7'    | 107.7      |
| С6—С7—Н7     | 107.1      | Сб'—С7'—Н7'    | 107.7      |
| С8—С7—Н7     | 107.1      | С8'—С7'—Н7'    | 107.7      |
| C15—C8—C7    | 110.2 (4)  | C14'—C8'—C7'   | 121.3 (3)  |
| C15—C8—C14   | 99.6 (3)   | C14'—C8'—C15'  | 99.5 (3)   |
| C7—C8—C14    | 121.8 (4)  | C7'—C8'—C15'   | 110.9 (3)  |
| C15—C8—C9    | 105.7 (3)  | C14'—C8'—C9'   | 109.8 (3)  |
| C7—C8—C9     | 108.0 (3)  | C7'—C8'—C9'    | 108.6 (3)  |
| C14—C8—C9    | 110.3 (3)  | C15'—C8'—C9'   | 105.6 (3)  |
| C11—C9—C10   | 114.7 (4)  | C11'—C9'—C10'  | 114.8 (4)  |
| C11—C9—C8    | 110.8 (3)  | C11'—C9'—C8'   | 111.1 (3)  |
| C10—C9—C8    | 115.9 (3)  | C10'—C9'—C8'   | 116.0 (3)  |
| С11—С9—Н9    | 104.7      | С11'—С9'—Н9'   | 104.5      |
| С10—С9—Н9    | 104.7      | С10'—С9'—Н9'   | 104.5      |
| С8—С9—Н9     | 104.7      | С8'—С9'—Н9'    | 104.5      |
| C1"—C10—C20  | 106.6 (18) | C1*—C10'—C20'  | 114 (2)    |
| C1"—C10—C1   | 4.2 (17)   | C1*—C10'—C1'   | 8(3)       |
| C20—C10—C1   | 109.7 (9)  | C20'—C10'—C1'  | 108.2 (5)  |
| C1"—C10—C5   | 107.1 (16) | C1*—C10'—C5'   | 101 (3)    |
| C20—C10—C5   | 111.7 (4)  | C20'—C10'—C5'  | 110.6 (4)  |
| C1—C10—C5    | 108.0 (7)  | C1'—C10'—C5'   | 109.6 (5)  |
| C1"—C10—C9   | 109.7 (9)  | C1*—C10'—C9'   | 108.7 (12) |
| C20—C10—C9   | 114.3 (4)  | C20'—C10'—C9'  | 113.8 (3)  |
| C1—C10—C9    | 105.6 (6)  | C1'—C10'—C9'   | 107.2 (4)  |
| C5—C10—C9    | 107.2 (3)  | C5'—C10'—C9'   | 107.3 (3)  |
| C12—C11—C9   | 117.1 (4)  | C12'—C11'—C9'  | 116.3 (4)  |
| C12—C11—H11A | 108.0      | C12'—C11'—H11C | 108.2      |
| C9—C11—H11A  | 108.0      | C9'—C11'—H11C  | 108.2      |

| C12—C11—H11B  | 108.0     | C12'—C11'—H11D | 108.2     |
|---------------|-----------|----------------|-----------|
| C9—C11—H11B   | 108.0     | C9'—C11'—H11D  | 108.2     |
| H11A—C11—H11B | 107.3     | H11C-C11'-H11D | 107.4     |
| C11—C12—C13   | 110.3 (4) | C13'—C12'—C11' | 111.2 (4) |
| C11—C12—H12A  | 109.6     | C13'—C12'—H12C | 109.4     |
| C13—C12—H12A  | 109.6     | C11'—C12'—H12C | 109.4     |
| C11—C12—H12B  | 109.6     | C13'—C12'—H12D | 109.4     |
| C13—C12—H12B  | 109.6     | C11'—C12'—H12D | 109.4     |
| H12A—C12—H12B | 108.1     | H12C—C12'—H12D | 108.0     |
| C16—C13—C14   | 102.8 (4) | C16'—C13'—C12' | 111.9 (4) |
| C16—C13—C12   | 112.0 (4) | C16'—C13'—C14' | 102.2 (4) |
| C14—C13—C12   | 107.0 (4) | C12'—C13'—C14' | 107.4 (4) |
| C16—C13—H13   | 111.5     | С16'—С13'—Н13' | 111.6     |
| C14—C13—H13   | 111.5     | C12'—C13'—H13' | 111.6     |
| С12—С13—Н13   | 111.5     | C14'—C13'—H13' | 111.6     |
| O4—C14—C13    | 106.6 (4) | O4'—C14'—C8'   | 111.2 (4) |
| O4—C14—C8     | 110.8 (3) | O4'—C14'—C13'  | 106.2 (3) |
| C13—C14—C8    | 103.0 (4) | C8'—C14'—C13'  | 103.0 (3) |
| O4—C14—H14    | 112.0     | O4'—C14'—H14'  | 112.0     |
| C13—C14—H14   | 112.0     | C8'—C14'—H14'  | 112.0     |
| C8—C14—H14    | 112.0     | C13'—C14'—H14' | 112.0     |
| O3—C15—C16    | 125.9 (5) | O3'—C15'—C16'  | 127.0 (4) |
| O3—C15—C8     | 125.3 (5) | O3'—C15'—C8'   | 124.2 (4) |
| C16—C15—C8    | 108.7 (4) | C16'—C15'—C8'  | 108.8 (4) |
| C17—C16—C15   | 123.8 (5) | C17'—C16'—C15' | 122.9 (6) |
| C17—C16—C13   | 129.7 (6) | C17'—C16'—C13' | 130.3 (6) |
| C15—C16—C13   | 106.3 (4) | C15'-C16'-C13' | 106.7 (4) |
| C16—C17—H17A  | 120.0     | C16'—C17'—H17C | 120.0     |
| С16—С17—Н17В  | 120.0     | C16'—C17'—H17D | 120.0     |
| H17A—C17—H17B | 120.0     | H17C—C17'—H17D | 120.0     |
| C4—C18—H18A   | 109.5     | C4'—C18'—H18D  | 109.5     |
| C4—C18—H18B   | 109.5     | C4'—C18'—H18E  | 109.5     |
| H18A—C18—H18B | 109.5     | H18D—C18'—H18E | 109.5     |
| C4C18H18C     | 109.5     | C4'—C18'—H18F  | 109.5     |
| H18A—C18—H18C | 109.5     | H18D—C18'—H18F | 109.5     |
| H18B-C18-H18C | 109.5     | H18E—C18'—H18F | 109.5     |
| C4—C19—H19A   | 109.5     | C4'—C19'—H19D  | 109.5     |
| C4—C19—H19B   | 109.5     | C4'—C19'—H19E  | 109.5     |
| H19A—C19—H19B | 109.5     | H19D—C19'—H19E | 109.5     |
| C4—C19—H19C   | 109.5     | C4'—C19'—H19F  | 109.5     |
| H19A—C19—H19C | 109.5     | H19D—C19'—H19F | 109.5     |
| H19B—C19—H19C | 109.5     | H19E—C19'—H19F | 109.5     |
| C10—C20—H20A  | 109.5     | C10'—C20'—H20D | 109.5     |
| C10—C20—H20B  | 109.5     | С10'—С20'—Н20Е | 109.5     |
| H20A—C20—H20B | 109.5     | H20D—C20'—H20E | 109.5     |
| C10—C20—H20C  | 109.5     | C10'—C20'—H20F | 109.5     |
| H20A—C20—H20C | 109.5     | H20D—C20'—H20F | 109.5     |
| H20B—C20—H20C | 109.5     | H20E—C20'—H20F | 109.5     |
| O5-C21-O4     | 123.1 (5) | O5'—C21'—O4'   | 122.3 (5) |

| O5—C21—C22     | 126.1 (6)   | O5'—C21'—C22'     | 127.6 (5)   |
|----------------|-------------|-------------------|-------------|
| O4—C21—C22     | 110.7 (5)   | O4'—C21'—C22'     | 110.1 (5)   |
| C21—C22—H22A   | 109.5       | C21'—C22'—H22D    | 109.5       |
| C21—C22—H22B   | 109.5       | C21'—C22'—H22E    | 109.5       |
| H22A—C22—H22B  | 109.5       | H22D—C22'—H22E    | 109.5       |
| C21—C22—H22C   | 109.5       | C21'—C22'—H22F    | 109.5       |
| H22A—C22—H22C  | 109.5       | H22D—C22'—H22F    | 109.5       |
| H22B—C22—H22C  | 109.5       | H22E—C22'—H22F    | 109.5       |
| C10-C1-C2-C3   | -21 (2)     | C10'-C1*-C2*-C3'  | 54 (6)      |
| C10—C1"—C2"—C3 | 47 (4)      | C1*—C2*—C3'—O1*   | 156 (4)     |
| C1"—C2"—C3—O1" | 147 (2)     | C1*—C2*—C3'—O1'   | -171 (3)    |
| C1"—C2"—C3—O1  | -169 (2)    | C1*—C2*—C3'—C2'   | 56 (3)      |
| C1"—C2"—C3—C2  | 59 (2)      | C1*—C2*—C3'—C4'   | -22 (4)     |
| C1"—C2"—C3—C4  | -26 (3)     | C1'—C2'—C3'—O1*   | -164 (3)    |
| C1—C2—C3—O1"   | -172.2 (14) | C1'—C2'—C3'—O1'   | -124.4 (13) |
| C1—C2—C3—O1    | -127.4 (14) | C1'—C2'—C3'—C2*   | -64 (2)     |
| C1—C2—C3—C2"   | -67 (2)     | C1'—C2'—C3'—C4'   | 57.3 (12)   |
| C1—C2—C3—C4    | 49.8 (13)   | O1*—C3'—C4'—C18'  | -50 (3)     |
| O1"—C3—C4—C19  | 80.5 (11)   | O1'—C3'—C4'—C18'  | -87.0 (8)   |
| O1—C3—C4—C19   | 29.5 (9)    | C2*—C3'—C4'—C18'  | 128 (2)     |
| C2"—C3—C4—C19  | -107.9 (14) | C2'—C3'—C4'—C18'  | 91.3 (7)    |
| C2—C3—C4—C19   | -147.8 (7)  | O1*—C3'—C4'—C19'  | 66 (3)      |
| O1"—C3—C4—C18  | -34.7 (11)  | O1'—C3'—C4'—C19'  | 29.4 (9)    |
| O1—C3—C4—C18   | -85.8 (8)   | C2*—C3'—C4'—C19'  | -116 (2)    |
| C2"—C3—C4—C18  | 136.9 (14)  | C2'—C3'—C4'—C19'  | -152.3 (6)  |
| C2—C3—C4—C18   | 97.0 (7)    | O1*—C3'—C4'—C5'   | -166 (3)    |
| O1"—C3—C4—C5   | -152.2 (10) | O1'—C3'—C4'—C5'   | 156.8 (8)   |
| O1—C3—C4—C5    | 156.8 (7)   | C2*—C3'—C4'—C5'   | 12 (2)      |
| C2"—C3—C4—C5   | 19.4 (15)   | C2'—C3'—C4'—C5'   | -24.8 (7)   |
| C2—C3—C4—C5    | -20.5 (8)   | C18'—C4'—C5'—C6'  | 83.3 (5)    |
| C3—C4—C5—C6    | -163.8 (4)  | C19'—C4'—C5'—C6'  | -39.1 (5)   |
| C19—C4—C5—C6   | -39.2 (5)   | C3'—C4'—C5'—C6'   | -163.1 (4)  |
| C18—C4—C5—C6   | 79.9 (5)    | C18'—C4'—C5'—C10' | -146.2 (4)  |
| C3—C4—C5—C10   | -34.3 (5)   | C19'—C4'—C5'—C10' | 91.3 (5)    |
| C19—C4—C5—C10  | 90.3 (5)    | C3'—C4'—C5'—C10'  | -32.6 (5)   |
| C18—C4—C5—C10  | -150.6 (4)  | C10'—C5'—C6'—C7'  | 59.5 (5)    |
| C10-C5-C6-C7   | 60.0 (5)    | C4'—C5'—C6'—C7'   | -168.8 (4)  |
| C4—C5—C6—C7    | -168.2 (4)  | C5'—C6'—C7'—O2'   | 175.4 (3)   |
| C5—C6—C7—O2    | 174.2 (3)   | C5'—C6'—C7'—C8'   | -58.4 (5)   |
| C5—C6—C7—C8    | -58.2 (5)   | O2'—C7'—C8'—C14'  | 45.9 (5)    |
| O2—C7—C8—C15   | -70.4 (5)   | C6'—C7'—C8'—C14'  | -75.7 (5)   |
| C6—C7—C8—C15   | 166.5 (3)   | O2'—C7'—C8'—C15'  | -70.0 (4)   |
| O2—C7—C8—C14   | 45.5 (5)    | C6'—C7'—C8'—C15'  | 168.3 (4)   |
| C6—C7—C8—C14   | -77.6 (5)   | O2'—C7'—C8'—C9'   | 174.4 (3)   |
| O2—C7—C8—C9    | 174.6 (3)   | C6'—C7'—C8'—C9'   | 52.8 (4)    |
| C6—C7—C8—C9    | 51.5 (5)    | C14'—C8'—C9'—C11' | -50.7 (4)   |
| C15—C8—C9—C11  | 57.6 (5)    | C7'—C8'—C9'—C11'  | 174.6 (4)   |
| C7—C8—C9—C11   | 175.5 (4)   | C15'—C8'—C9'—C11' | 55.7 (5)    |
| C14—C8—C9—C11  | -49.2 (5)   | C14'—C8'—C9'—C10' | 82.8 (4)    |
|                |             |                   |             |

| C15—C8—C9—C10   | -169.5 (4)  | C7'—C8'—C9'—C10'    | -51.9 (4)   |
|-----------------|-------------|---------------------|-------------|
| C7—C8—C9—C10    | -51.6 (5)   | C15'—C8'—C9'—C10'   | -170.8 (4)  |
| C14—C8—C9—C10   | 83.7 (4)    | C2*C1*C10'C20'      | 45 (6)      |
| C2"—C1"—C10—C20 | 58 (3)      | C2*C1*C10'C1'       | 92 (11)     |
| C2"—C1"—C10—C5  | -61 (3)     | C2*—C1*—C10'—C5'    | -74 (5)     |
| C2"—C1"—C10—C9  | -177 (2)    | C2*—C1*—C10'—C9'    | 173 (4)     |
| C2-C1-C10-C20   | 91.6 (15)   | C2'—C1'—C10'—C1*    | -43 (9)     |
| C2-C1-C10-C5    | -30.3 (17)  | C2'—C1'—C10'—C20'   | 92.9 (9)    |
| C2-C1-C10-C9    | -144.8 (13) | C2'—C1'—C10'—C5'    | -27.7 (10)  |
| C6—C5—C10—C1"   | -173.6 (14) | C2'—C1'—C10'—C9'    | -143.9 (8)  |
| C4—C5—C10—C1"   | 55.6 (14)   | C6'—C5'—C10'—C1*    | -168.0 (14) |
| C6—C5—C10—C20   | 70.0 (4)    | C4'—C5'—C10'—C1*    | 62.0 (14)   |
| C4—C5—C10—C20   | -60.8 (4)   | C6'—C5'—C10'—C20'   | 70.6 (4)    |
| C6-C5-C10-C1    | -169.3 (8)  | C4'—C5'—C10'—C20'   | -59.4 (4)   |
| C4—C5—C10—C1    | 59.9 (9)    | C6'—C5'—C10'—C1'    | -170.3 (5)  |
| C6—C5—C10—C9    | -55.9 (4)   | C4'—C5'—C10'—C1'    | 59.7 (6)    |
| C4—C5—C10—C9    | 173.3 (3)   | C6'—C5'—C10'—C9'    | -54.1 (4)   |
| C11—C9—C10—C1"  | -59 (2)     | C4'—C5'—C10'—C9'    | 175.9 (3)   |
| C8—C9—C10—C1"   | 170 (2)     | C11'—C9'—C10'—C1*   | -67 (3)     |
| C11—C9—C10—C20  | 61.0 (5)    | C8'—C9'—C10'—C1*    | 161 (3)     |
| C8—C9—C10—C20   | -70.1 (5)   | C11'—C9'—C10'—C20'  | 61.1 (5)    |
| C11—C9—C10—C1   | -59.7 (10)  | C8'—C9'—C10'—C20'   | -70.7 (5)   |
| C8—C9—C10—C1    | 169.2 (9)   | C11'—C9'—C10'—C1'   | -58.6 (6)   |
| C11—C9—C10—C5   | -174.7 (4)  | C8'—C9'—C10'—C1'    | 169.7 (6)   |
| C8—C9—C10—C5    | 54.2 (4)    | C11'—C9'—C10'—C5'   | -176.3 (4)  |
| C10-C9-C11-C12  | -97.5 (5)   | C8'—C9'—C10'—C5'    | 52.0 (4)    |
| C8—C9—C11—C12   | 36.1 (6)    | C10'—C9'—C11'—C12'  | -96.8 (5)   |
| C9—C11—C12—C13  | -42.9 (7)   | C8'—C9'—C11'—C12'   | 37.2 (6)    |
| C11—C12—C13—C16 | -49.3 (6)   | C9'—C11'—C12'—C13'  | -43.4 (6)   |
| C11—C12—C13—C14 | 62.6 (6)    | C11'—C12'—C13'—C16' | -49.3 (6)   |
| C21—O4—C14—C13  | -149.3 (4)  | C11'-C12'-C13'-C14' | 62.1 (5)    |
| C21—O4—C14—C8   | 99.4 (5)    | C21'—O4'—C14'—C8'   | 102.2 (5)   |
| C16—C13—C14—O4  | -74.1 (4)   | C21'—O4'—C14'—C13'  | -146.4 (4)  |
| C12-C13-C14-O4  | 167.8 (4)   | C7'—C8'—C14'—O4'    | -49.8 (5)   |
| C16—C13—C14—C8  | 42.5 (4)    | C15'—C8'—C14'—O4'   | 71.8 (4)    |
| C12—C13—C14—C8  | -75.6 (4)   | C9'—C8'—C14'—O4'    | -177.8 (3)  |
| C15—C8—C14—O4   | 71.9 (4)    | C7'—C8'—C14'—C13'   | -163.2 (4)  |
| C7—C8—C14—O4    | -49.2 (5)   | C15'—C8'—C14'—C13'  | -41.6 (4)   |
| C9—C8—C14—O4    | -177.3 (3)  | C9'—C8'—C14'—C13'   | 68.9 (4)    |
| C15—C8—C14—C13  | -41.7 (4)   | C16'—C13'—C14'—O4'  | -73.8 (4)   |
| C7—C8—C14—C13   | -162.8 (4)  | C12'—C13'—C14'—O4'  | 168.3 (4)   |
| C9—C8—C14—C13   | 69.1 (4)    | C16'—C13'—C14'—C8'  | 43.1 (4)    |
| C7—C8—C15—O3    | -24.0 (6)   | C12'—C13'—C14'—C8'  | -74.7 (4)   |
| C14—C8—C15—O3   | -153.2 (4)  | C14'—C8'—C15'—O3'   | -154.8 (5)  |
| C9—C8—C15—O3    | 92.4 (5)    | C7'—C8'—C15'—O3'    | -26.0 (6)   |
| C7—C8—C15—C16   | 155.7 (3)   | C9'—C8'—C15'—O3'    | 91.4 (5)    |
| C14—C8—C15—C16  | 26.5 (4)    | C14'—C8'—C15'—C16'  | 25.8 (4)    |
| C9—C8—C15—C16   | -87.9 (4)   | C7'—C8'—C15'—C16'   | 154.7 (4)   |
| O3—C15—C16—C17  | -6.3 (8)    | C9'—C8'—C15'—C16'   | -87.9 (4)   |

| C8—C15—C16—C17   | 174.1 (5)  | O3'—C15'—C16'—C17'  | -3.1 (8)   |
|------------------|------------|---------------------|------------|
| O3-C15-C16-C13   | 178.7 (4)  | C8'—C15'—C16'—C17'  | 176.2 (5)  |
| C8—C15—C16—C13   | -1.0 (5)   | O3'—C15'—C16'—C13'  | -179.1 (5) |
| C14—C13—C16—C17  | 159.8 (5)  | C8'—C15'—C16'—C13'  | 0.3 (5)    |
| C12-C13-C16-C17  | -85.6 (7)  | C12'—C13'—C16'—C17' | -87.3 (7)  |
| C14—C13—C16—C15  | -25.4 (4)  | C14'—C13'—C16'—C17' | 158.1 (6)  |
| C12-C13-C16-C15  | 89.1 (5)   | C12'-C13'-C16'-C15' | 88.2 (5)   |
| C14—O4—C21—O5    | 6.5 (8)    | C14'-C13'-C16'-C15' | -26.4 (5)  |
| C14—O4—C21—C22   | -175.3 (5) | C14'—O4'—C21'—O5'   | 4.0 (8)    |
| C10'-C1'-C2'-C3' | -28.0 (14) | C14'—O4'—C21'—C22'  | -174.3 (5) |
|                  |            |                     |            |

Hydrogen-bond geometry (Å, °)

| D—H···A                           | <i>D</i> —Н | $H \cdots A$ | $D \cdots A$ | D—H···A |
|-----------------------------------|-------------|--------------|--------------|---------|
| O2—H2O···O1 <sup>i</sup>          | 0.82        | 2.09         | 2.747 (6)    | 137     |
| O2—H2O···O1 <sup>i</sup>          | 0.82        | 2.09         | 2.747 (6)    | 137     |
| O2'—H2O'…O1' <sup>i</sup>         | 0.82        | 2.05         | 2.764 (5)    | 146     |
| O2'—H2O'…O1* <sup>i</sup>         | 0.82        | 2.24         | 2.89 (3)     | 136     |
| Symmetry codes: (i) $x, y, z-1$ . |             |              |              |         |

sup-14





Fig. 2

